第2章 Java内存区域与内存溢出异常
2.2 运行时数据区
2.2.1 程序计数器
程序计数器(Program Counter Register)是一块较小的内存空间,它可以看作是当前线程所执行的字节码的行号指示器。
每条线程都需要有一个独立的程序计数器。
如果线程正在执行的是一个Java方法,这个计数器记录的是正在执行的虚拟机字节码指令的地址;如果正在执行的是本地(Native)方法,这个计数器则应为空(Undefined)。此内存区域是唯一一个在《Java虚拟机规范》中没有任何规定OutOfMemoryError
情况的区域。
2.2.2 Java虚拟机栈
与程序计数器一样,Java虚拟机栈(Java Virtual Machine Stack)也是线程私有的,它的生命周期与线程相同。虚拟机描述的是Java方法执行的线程内存模型:每个方法被执行的时候,Java虚拟机都会同步创建一个栈帧(Stack Frame)用于存储:
- 局部变量表
- 操作数栈
- 动态链接
- 方法出口
等信息。
局部变量表存放了编译器可知的各种Java虚拟机的
- 基本数据类型(Boolean、byte、char、short、int、float、long、double)
- 对象引用(reference类型,它并不等同于对象本身,可能是一个指向对象起始地址的引用指针,也可能是指向一个代表对象的句柄或者其他与此对象相关的位置)
- returnAddress类型(指向了一条字节码指令的地址)
这些数据类型在局部变量表中的存储空间以局部变量槽(Slot)来表示,其中64位长度的long和double类型的数据会占用两个变量槽,其余的数据类型只占用一个。局部变量表所需的内存空间在编译期间完成分配,当进入一个方法时,这个方法需要在栈帧中分配多大的局部变量空间是完全确定的,在方法运行期间不会改变局部变量表的大小。这里的“大小”指的是变量槽的数量。
在《Java虚拟机规范》中,对这个内存区域规定了两类异常状况:如果线程请求的栈深度大于虚拟机所允许的深度,将抛出StackOverflowError
异常;如果Java虚拟机栈容量可以动态扩展,当栈扩展时无法申请到足够的内存会抛出OutOfMemoryError
异常。
2.2.3 本地方法栈
本地方法栈(Native Method Stacks)则是为虚拟机使用到的本地(Native)方法服务。
2.2.4 Java堆
Java堆(Java Heap)是被所有线程共享的一块区域,在虚拟机启动时创建。此内存区域的唯一目的就是存放对象实例。Java世界里“几乎”所有的对象实例都在这里分配内存。由于即时编译技术的进步,尤其是逃逸分析技术的日渐强大,栈上分配、标量替换优化手段已经导致一些微妙的变化悄然发生。
Java堆是垃圾收集器管理的内存区域。
从分配内存的角度看,所有线程共享的Java堆中可以划分出多个线程私有的分配缓冲区(Thread Local Allocation Buffer,TLAB),以提升对象分配时的效率。
2.2.5 方法区
方法区(Method Area)与Java堆一样,是各个线程共享的内存区域,它用于存储已被虚拟机加载的
- 类型信息
- 常量
- 静态变量
- 即时编译器编译后的代码缓存
等数据。
2.2.6 运行时常量池
运行时常量池(Runtime Constant Pool)是方法区的一部分。Class文件中除了有类的版 本、字段、方法、接口等描述信息外,还有一项信息是常量池表(Constant Pool Table),用于存放编译期生成的各种字面量与符号引用,这部分内容将在类加载后存放到方法区的运行时常量池中。
除了保存Class文件中描述的符号引用外,还会把由符号引用翻译出来的直接引用也存储在运行时常量池中。
运行时常量池相对于Class文件常量池的另外一个重要特征是具备动态性,运行期间也可以将新的常量放入池中。
2.2.7 直接内存
在JDK 1.4中新加入了NIO(New Input/Output)类,引入了一种基于通道(Channel) 与缓冲区(Buffer)的I/O方式,它可以使用Native函数库直接分配堆外内存,然后通过一个存储在Java堆里面的DirectByteBuffer
对象作为这块内存的引用进行操作。这样能在一些场景中显著提高性能,因为避免了在Java堆和Native堆中来回复制数据。
一般在配置虚拟机参数时容易忽略掉直接内存对本机总内存带来的影响。从而导致动态扩展时会出现OutOfMemoryError
异常。
2.3 HotSpot虚拟机对象探秘
2.3.1 对象的创建
当Java虚拟机遇到一条字节码new
指令时,首先将去检查这个指令的参数是否能在常量池中定位到一个类的符号引用,并且检查这个符号引用代表的类是否已被加载、解析和初始化过。如果没有,那必须先执行相应的类加载过程。
在类加载检查通过后,接下来虚拟机将为新生对象分配内存。对象所需内存的大小在类加载完成后便可完全确定,为对象分配空间的任务实际上便等同于把一块确定大小的内存块从Java堆中划分出来。
假设Java堆中内存是绝对规整的,所有被使用过的内存都被放在一边,空闲的内存被放在另一边,中间放着一个指针作为分界点的指示器,那所分配内存就仅仅是把那个指针向空闲空间方向挪动一段与对象大小相等的距离,这种分配方式称为“指针碰撞”(Bump The Pointer)。
但如果Java堆中的内存并不是规整的,已被使用的内存和空闲的内存相互交错在一起,那就没有办法简单地进行指针碰撞了,虚拟机就必须维护一个列表,记录上哪些内存块是可用的,在分配的时候从列表中找到一块足够大的空间划分给对象实例,并更新列表上的记录,这种分配方式称为“空闲列表”(Free List)。
选择哪种分配方式由Java堆是否规整决定,而Java堆是否规整又由所采用的垃圾收集器是否带有空间压缩整理(Compact)的能力决定。因此,当使用Serial、ParNew等带压缩整理过程的收集器时,系统采用的分配算法是指针碰撞,既简单又高效;而当使用CMS这种基于清除(Sweep)算法的收集器时,理论上就只能采用较为复杂的空闲列表来分配内存。
强调“理论上”是因为在CMS的实现里面,为了能在多数情况下分配得更快,设计了一个叫做Linear Aloeation Bufer的分配缓冲区,通过空闲列表拿到一大块分配缓冲区之后,在它里面仍然可以使用指针碰撞方式来分配。
除如何划分可用空间之外,还有另外一个需要考虑的问题:对象创建在虚拟机中是非常频繁的行为,即使仅仅修改一个指针所指向的位置,在并发情况下也并不是线程安全的,可能出现正在给对象A分配内存,指针还没来得及修改,对象B又同时使用了原来的指针来分配内存的情况。
解决这个问题有两种可选方案:
- 一种是对分配内存空间的动作进行同步处理——实际上虚拟机是采用CAS配上失败重试的方式保证更新操作的原子性;
- 另外一种是把内存分配的动作按照线程划分在不同的空间之中进行,即每个线程在Java堆中预先分配一小块内存,称为本地线程分配缓冲(Thread Local Allocation Buffer,TLAB),哪个线程要分配内存,就在哪个线程的本地缓冲区中分配,只有本地缓冲区用完了,分配新的缓存区时才需要同步锁定。
虚拟机是否使用TLAB,可以通过-XX:+/-UseTLAB
参数来设定。
内存分配完成之后,虚拟机必须将分配到的内存空间(但不包括对象头)都初始化为零值(初始值),如果使用了TLAB的话,这一项工作也可以提前至TLAB分配时顺便进行。这步操作保证了对象的实例字段在Java代码中可以不赋初始值就直接使用,使程序能访问到这些字段的数据类型所对应的零值。
接下来,Java虚拟机还要对对象进行必要的设置,主要是设置对象头的内容。
在上面工作都完成之后,从虚拟机的视角来看,一个新的对象已经产生了。但是从Java程序的视角看来,对象创建才刚刚开始——构造函数,即Class文件中的<init>()
方法还没有执行,所有的字段都为默认的零值,对象需要的其他资源和状态信息也还没有按照预定的意图构造好。一般来说(由字节码流中new
指令后面是否跟随invokespecial
指令所决定,Java编译器会在遇到new
关键字的地方同时生成这两条字节码指令,但如果直接通过其他方式产生的则不一定如此),new
指令之后会接着执行<init>()
方法,按照程序员的意愿对对象进行初始化,这样一个真正可用的对象才算完全被构造出来。
2.3.2 对象的内存布局
在HotSpot虚拟机里,对象在堆内存中的存储布局可以划分为三个部分:
- 对象头(Header)
- 实例数据(Instance Data)
- 对齐填充(Padding)
HotSpot虚拟机对象的对象头部分包括两类信息。第一类是用于存储对象自身的运行时数据,如哈希码(HashCode)、GC分代年龄、锁状态标志、线程持有的锁、偏向线程ID、偏向时间戳等,这部分数据的长度在32位和64位的虚拟机(未开启压缩指针)中分别为32个比特和64个比特,官方称它为“Mark Word”。Mark Word被设计成一个有着动态定义的数据结构,以便在极小的空间内存储尽量多的数据,根据对象的状态复用自己的存储空间。
例如在32位的HotSpot虚拟机中,如对象未被同步锁锁定的状态下,Mark Word的32个比特存储空间中的25个比特用于存储对象哈希码,4个比特用于存储对象分代年龄,2个比特用于存储锁标志位,1个比特固定为0,在其他状态(轻量级锁定、重量级锁定、GC标记、可偏向)下对象的存储内容如下所示。
对象头的另外一部分是类型指针,即对象指向它的类型元数据的指针,Java虚拟机通过这个指针来确定该对象是哪个类的实例。如果对象是一个Java数组,那在对象头中还必须有一块用于记录数组长度的数据。
接下来实例数据部分是对象真正存储的有效信息,即我们在程序代码里面所定义的各种类型的字段内容,无论是从父类继承下来的,还是在子类中定义的字段都必须记录起来。这部分的存储顺序会受到虚拟机分配策略参数(-XX:FieldsAllocationStyle
参数)和字段在Java源码中定义顺序的影响。在默认的分配策略中,相同宽度的字段总是被分配到一起存放,在满足这个前提条件的情况下,在父类中定义的变量会出现在子类之前。如果HotSpot虚拟机的-XX:CompactFilds
参数值为true(默认为true),那子类之中较窄的变量也允许插入父类变量的空隙之中
对象的第三部分是对齐填充,这并不是必然存在的,也没有特别的含义,它仅仅起着占位符的作用。由于HotSpot虚拟机的自动内存管理系统要求对象起始地址必须是8字节的整数倍,换句话说就是任何对象的大小都必须是8字节的整数倍。
2.3.3 对象的访问定位
Java程序会通过栈上的reference数据来操作堆上的具体对象。主流的对象访问方式主要有使用句柄和直接指针两种:
- 如果使用句柄访问的话,Java堆中将可能会划分出一块内存来作为句柄池,reference中存储的就是对象的句柄地址,而句柄中包含了对象实例数据与类型数据各自具体的地址信息,其结构如下图所示。
- 如果使用直接指针访问的话,Java堆中对象的内存布局就必须考虑如何放置访问类型数据的相关信息,reference中存储的直接就是对象地址,如果只是访问对象本身的话,就不需要多一次间接访问的开销,如下图所示。
这两种对象访问方式各有优势,使用句柄来访问的最大好处就是reference 中存储的是稳定句柄地址,在对象被移动时只会改变句柄中的实例数据指针,而reference本身不需要被修改。使用直接指针来访问最大的好处就是速度快,它节省了一次指针定位的时间开销。
2.4 实战:OutOfMemoryError异常
2.4.1 Java堆溢出
Java堆内存的OutOfMemoryError
异常是实际应用中最常见的内存溢出异常情况。出现Java堆内存溢出时,异常堆栈信息java.lang.OutOfMemoryError
会跟随进一步提示Java heap space
。
要解决这个内存区域的异常,常规的处理方法是首先通过内存映像分析工具(如Eclipse Memory Analyzer)对Dump 出来的堆转储快照进行分析。第一步首先应确认内存中 导致OOM的对象是否是必要的,也就是要先分清楚到底是出现了内存泄漏(Memory Leak)还是内存溢出(Memory Overflow)。
如果是内存泄漏,可进一步通过工具查看泄漏对象到GC Roots的引用链,找到泄漏对象是通过怎样的引用路径、与哪些GC Roots相关联,才导致垃圾收集器无法回收它们,根据泄露对象的类型信息以及它到GC Roots引用链的信息,一般可以比较准确地定位到这些对象创建的位置,进而找出产生内存泄漏的代码的具体位置。
如果不是内存泄漏,换句话说就是内存中的对象确实都是必须存活的,那就应当检查Java虚拟机的堆参数(-Xmx
与-Xms
)设置,与机器的内存对比,看看是否还有向上调整的空间。再从代码上检查是否存在某些对象生命周期过长、持有状态时间过长、存储结构设计不合理等情况,尽量减少程序运行期的内存消耗。
2.4.2 虚拟机栈和本地方法栈溢出
由于HotSpot虚拟机中并不区分虚拟机栈和本地方法栈,因此对于HotSpot来说,-Xoss
参数(设置本地方法栈大小)虽然存在,但实际上是没有任何效果的,栈容量只能由-Xss
参数来设定。关于虚拟机栈和本地方法栈,在《Java虚拟机规范》中描述了两种异常:
-
如果线程请求的栈深度大于虚拟机所允许的最大深度,将抛出StackOverflowError异常。
-
如果虚拟机的栈内存允许动态扩展,当扩展栈容量无法申请到足够的内存时,将抛出OutOfMemoryError异常。
《Java虚拟机规范》明确允许Java虚拟机实现自行选择是否支持栈的动态扩展,而HotSpot虚拟机的选择是不支持扩展,无论是由于栈帧太大还是虚拟机栈容量太小,当新的栈帧内存无法分配的时候,HotSpot虚拟机抛出的都是StackOverflowError
异常。
出现StackOverflowError
异常时,会有明确错误堆栈可供分析,相对而言比较容易定位到问题所在。如果使用HotSpot虚拟机默认参数,栈深度在大多数情况下(因为每个方法压入栈的帧大小并不是一样的,所以只能说大多数情况下)到达1000~2000是完全没有问题,对于正常的方法调用(包括不能做尾递归优化的递归调用),这个深度应该完全够用了。但是,如果是建立过多线程导致的内存溢出,在不能减少线程数量或者更换64位虚拟机的情况下,就只能通过减少最大堆和减少栈容量来换取更多的线程。这种通过“减少内存”的手段来解决内存溢出的方式,如果没有这方面处理经验,一般比较难以想到,这一点读者需要在开发32位系统的多线程应用时注意。
2.4.3 方法区和运行时常量池溢出
在JDK 6或更早之前的HotSpot虚拟机中,常量池都是分配在永久代中。前面曾经提到HotSpot从JDK 7开始逐步“去永久代”计划,并在JDK 8中完全使用元空间来替代永久代的背景故事,在此我们就以测试代码来观察一下,使用“永久代”还是“元空间”来实现方法区,对程序有什么实际的影响。
String::intern()
是一个本地方法,它的作用是如果字符串常量池中已经包含一个等于此String对象的字符串,则返回代表池中这个字符串的String对象的引用;否则,会将此String对象包含的字符串添加到常量池中,并且返回此String对象的引用。
测试代码
public class RuntimeConstantPoolOOM {
public static void main(String[] args) {
String str1 = new StringBuilder("计算机").append("软件").toString();
System.out.println(str1.intern() == str1);
String str2 = new StringBuilder("ja").append("va").toString();
System.out.println(str2.intern() == str2);
}
}
这段代码在JDK 6中运行,会得到两个false
,而在JDK 7中运行,会得到一个true
和一个false
。产生差异的原因是,在JDK 6中,intern()
方法会把首次遇到的字符串实例复制到永久代的字符串常量池中存储,返回的也是永久代里面这个字符串实例的引用,而由StringBuilder
创建的字符串对象实例在Java堆上,所以必然不可能是同一个引用,结果将返回false
。
而JDK 7(以及部分其他虚拟机,例如JRockit)的intern()
方法实现就不需要再拷贝字符串的实例到永久代了,既然字符串常量池已经移到Java堆中,那只需要在常量池里记录一下首次出现的实例引用即可,因此intern()
返回的引用和由StringBuilder
创建的那个字符串实例就是同一个。而对str2
比较返回false
,这是因为“java”这个字符串在执行StringBuilder.toString()
之前(在加载sun.misc.Version
这个类的时候进入常量池的)就已经出现过了,字符串常量池中已经有它的引用,不符合intern()
方法要求“首次遇到”的原则,“计算机软件”这个字符串则是首次出现的,因此结果返回true
。
2.4.4 本机直接内存溢出
直接内存(Direct Memory)的容量大小可通过-XX:MaxDirectMemorySize
参数来指定,如果不去指定,则默认与Java堆最大值(由-Xmx
指定)一致。
由直接内存导致的内存溢出,一个明显的特征是在Heap Dump文件中不会看见有什么明显的异常情况,如果读者发现内存溢出之后产生的Dump文件很小,而程序中又直接或间接使用了DirectMemory(典型的间接使用就是NIO),那就可以考虑重点检查一下直接内存方面的原因了。
评论区