第6章 类文件结构
6.3 Class类文件结构
Class文件是一组以字节为基础单位的二进制流,当遇到需要占用8个字节以上空间的数据项时,则会按照高位在前的方式分割成若干个字节进行存储。
高位在前这种顺序称为“Big-Endian”,具体顺序是指按高位字节在地址最低位,最低字节在地址最高位来存储数据,它是SPARC、PowerPC等处理器的默认多字节存储顺序,而x86等处理器则是使用了相反的“Little-Endian”顺序来存储数据。
根据《Java虚拟机规范》的规定,Class文件格式采用一种类似于C语言结构体的伪结构来存储数据,这种伪结构中只有两种数据类型:“无符号数”和“表”。
- 无符号数属于基本的数据类型,以u1、u2、u4、u8来分别代表1个字节、2个字节、4个字节和8个字节的无符号数,无符号数可以用来描述数字、索引引用、数量值或者按照UTF-8编码构成字符串值。
- 表是由多个无符号数或者其他表作为数据项构成的复合数据类型,为了便于区分,所有表的命名都习惯性地以“_info”结尾。表用于描述有层次关系的复合结构的数据,
ClassFile {
u4 magic;
u2 minor_version;
u2 major_version;
u2 constant_pool_count;
cp_info constant_pool[constant_pool_count-1];
u2 access_flags;
u2 this_class;
u2 super_class;
u2 interfaces_count;
u2 interfaces[interfaces_count];
u2 fields_count;
field_info fields[fields_count];
u2 methods_count;
method_info methods[methods_count];
u2 attributes_count;
attribute_info attributes[attributes_count];
}
无论是无符号数还是表,当需要描述同一类型但数量不定的多个数据时,经常会使用一个前置的容量计数器加若干个连续的数据项的形式,这时候称这一系列连续的某一类型的数据为某一类型的“集合”。
本章会用一段简单的代码,使用JDK 6编译输出的class文件来讲解
代码清单:
package org.fenixsoft.clazz;
public class TestClass {
private int m;
public int inc() {
return m + 1;
}
}
编译后的class文件:
Classfile /root/org/fenixsoft/clazz/TestClass.class
Last modified 2024年1月20日; size 295 bytes
SHA-256 checksum bb11a7c615923f454bb3459321840ae3133571cb5fa00e1a1bb1452cc153a764
Compiled from "TestClass.java"
public class org.fenixsoft.clazz.TestClass
minor version: 0
major version: 61
flags: (0x0021) ACC_PUBLIC, ACC_SUPER
this_class: #8 // org/fenixsoft/clazz/TestClass
super_class: #2 // java/lang/Object
interfaces: 0, fields: 1, methods: 2, attributes: 1
Constant pool:
#1 = Methodref #2.#3 // java/lang/Object."<init>":()V
#2 = Class #4 // java/lang/Object
#3 = NameAndType #5:#6 // "<init>":()V
#4 = Utf8 java/lang/Object
#5 = Utf8 <init>
#6 = Utf8 ()V
#7 = Fieldref #8.#9 // org/fenixsoft/clazz/TestClass.m:I
#8 = Class #10 // org/fenixsoft/clazz/TestClass
#9 = NameAndType #11:#12 // m:I
#10 = Utf8 org/fenixsoft/clazz/TestClass
#11 = Utf8 m
#12 = Utf8 I
#13 = Utf8 Code
#14 = Utf8 LineNumberTable
#15 = Utf8 inc
#16 = Utf8 ()I
#17 = Utf8 SourceFile
#18 = Utf8 TestClass.java
{
public org.fenixsoft.clazz.TestClass();
descriptor: ()V
flags: (0x0001) ACC_PUBLIC
Code:
stack=1, locals=1, args_size=1
0: aload_0
1: invokespecial #1 // Method java/lang/Object."<init>":()V
4: return
LineNumberTable:
line 3: 0
public int inc();
descriptor: ()I
flags: (0x0001) ACC_PUBLIC
Code:
stack=2, locals=1, args_size=1
0: aload_0
1: getfield #7 // Field m:I
4: iconst_1
5: iadd
6: ireturn
LineNumberTable:
line 7: 0
}
6.3.1 魔数与Class文件的版本
每个Class文件的头4个字节被称为魔数(Magic Number),它的唯一作用是确定这个文件是否为一个能被虚拟机接受的Class文件。
xls/doc文件的魔数是“D0CF11E0”;xlsx/docx文件的魔数是“504B0304”。
紧接着魔数的4个字节存储的是Class文件的版本号:第5和第6个字节是次版本号(Minor Version),第7和第8个字节是主版本号(Major Version)。
6.3.2 常量池
紧接着主、次版本号之后的是常量池入口。
由于常量池中常量的数量是不固定的,所以在常量池的入口需要放置一项u2类型的数据,代表常量池容量计数值(constant_pool_count)。与Java中语言习惯不同,这个容量计数是从1而不是0开始的。在Class文件格式规范制定之时,设计者将第0项常量空出来是有特殊考虑的,这样做的目的在于,如果后面某些指向常量池的索引值的数据在特定情况下需要表达“不引用任何一个常量池项目”的含义,可以把索引值设置为0来表示。
常量池中主要存放两大类常量:字面量(Literal)和符号引用(Symbolic References)。字面量比较接近于Java语言层面的常量概念,如文本字符串、被声明为final
的常量值等。而符号引用则属于编译原理方面的概念,主要包括下面几类常量:
- 被模块导出或者开放的包(Package)
- 类和接口的全限定名(Fully Qualified Name)
- 字段的名称和描述符(Descriptor)
- 方法的名称和描述符
- 方法句柄和方法类型(Method Handle、Method Type、Invoke Dynamic)
- 动态调用点和动态常量(Dynamically-Computed Call Site、Dynamically-Computed Constant)
Java代码在进行Javac编译的时候,并不像C和C++那样有“连接”这一步骤,而是在虚拟机加载Class文件的时候进行动态连接。也就是说,在class文件中不会保存各个方法、字段最终在内存中的布局信息。
当虚拟机做类加载时,将会从常量池获得对应的符号引用,再在类创建时或运行时解析、翻译到具体的内存地址之中。
6.3.3 访问标志
在常量池结束之后,紧接着的2个字节代表访问标志(access_flags),这个标志用于识别一些类或者接口层次的访问信息,包括:这个Class是类还是接口;是否定义为public
类型;是否定义为abstract
类型;如果是类的话,是否被声明为final
;等等。
Table. Class access and property modifiers
Flag Name | Value | Interpretation |
---|---|---|
ACC_PUBLIC | 0x0001 | Declared public ; may be accessed from outside its package. |
ACC_FINAL | 0x0010 | Declared final ; no subclasses allowed. |
ACC_SUPER | 0x0020 | Treat superclass methods specially when invoked by the invokespecial instruction. |
ACC_INTERFACE | 0x0200 | Is an interface, not a class. |
ACC_ABSTRACT | 0x0400 | Declared abstract ; must not be instantiated. |
ACC_SYNTHETIC | 0x1000 | Declared synthetic; not present in the source code. |
ACC_ANNOTATION | 0x2000 | Declared as an annotation type. |
ACC_ENUM | 0x4000 | Declared as an enum type. |
ACC_MODULE | 0x8000 | Is a module, not a class or interface. |
https://docs.oracle.com/javase/specs/jvms/se9/html/jvms-4.html#jvms-4.1
6.3.4 类索引、父类索引与接口索引集合
类索引(this_class)和父类索引(super_class)都是一个u2类型的数据,而接口索引集合(interfaces)是一组u2类型的数据的集合,Class文件中由这三项数据来确定该类型的继承关系。类索引用于确定这个类的全限定名,父类索引用于确定这个类的父类的全限定名。
接口索引集合就用来描述这个类实现了哪些接口,这些被实现的接口将按implements关键字(如果这个Class文件表示的是一个接口,则应当是extends关键字)后的接口顺序从左到右排列在接口索引集合中。
类索引、父类索引和接口索引集合都按顺序排列在访问标志之后,类索引和父类索引用两个u2类型的索引值表示,它们各自指向一个类型为CONSTANT_Class_info
的类描述符常量,通过CONSTANT_Class_info
类型的常量中的索引值可以找到定义在CONSTANT_Utf8_info
类型的常量中的全限定名字符串。下图演示了代码清单中代码的类索引查找过程。
对于接口索引集合,入口的第一项u2类型的数据为接口计数器(interfaces_count),表示索引表的容量。如果该类没有实现任何接口,则该计数器值为0,后面接口的索引表不再占用任何字节。
6.3.5 字段表集合
字段表(field_info)用于描述接口或者类中声明的变量。Java语言中的“字段”(Field)包括类级变量以及实例级变量,但不包括在方法内部声明的局部变量。下表列出了字段表的最终格式。
类型 | 名称 | 数量 |
---|---|---|
u2 | access_flag | 1 |
u2 | name_index | 1 |
u2 | descriptor_index | 1 |
u2 | attributes_count | 1 |
attribute_info | attributes | attributes_count |
字段修饰符放在access_flags项目中,它与类中的access_flags项目是非常类似的,都是一个u2的数据类型,其中可以设置的标志位和含义如下表所示。
标志名称 | 标志值 | 含义 |
---|---|---|
ACC_PUBLIC | 0x0001 | 字段是否public |
ACC_PRIVATE | 0x0002 | 字段是否private |
ACC_PROTECTED | 0x0004 | 字段是否protected |
ACC_STATIC | 0x0008 | 字段是否static |
ACC_FINAL | 0x0010 | 字段是否final |
ACC_VOLATILE | 0x0040 | 字段是否volatile |
ACC_TRANSIENT | 0x0080 | 字段是否transient |
ACC_SYNTHETIC | 0x1000 | 字段是否由编译器自动产生 |
ACC_ENUM | 0x4000 | 字段是否enum |
跟随access_flags标志的是两项索引值:name_index和descriptor_index。它们都是对常量池项的引用,分别代表着字段的简单名称以及字段和方法的描述符。
以代码清单中的代码为例,“org/fenixsoft/clazz/TestClass”是这个类的全限定名,仅仅是把类全名中的“.”替换成了“/”而已,为了使连续的多个全限定名之间不产生混淆,在使用时最后一般会加入一个“;”号表示全限定名结束。
简单名称则就是指没有类型和参数修饰的方法或者字段名称,这个类中的inc()方法和m字段的简单名称分别就是“inc”和“m”。
描述符的作用是用来描述字段的数据类型、方法的参数列表(包括数量、类型以及顺序)和返回值。根据描述符规则,基本数据类型(byte、char、double、float、int、long、short、boolean)以及代表无返回值的void类型都用一个大写字符来表示,而对象类型则用字符L加对象的全限定名来表示,详见下表。
标识字符 | 含义 |
---|---|
B | 基本类型byte |
C | 基本类型char |
D | 基本类型double |
F | 基本类型float |
I | 基本类型int |
J | 基本类型long |
S | 基本类型short |
Z | 基本类型boolean |
V | 特殊类型void |
L | 对象类型,如Ljava/lang/Object; |
对于数组类型,每一维度将使用一个前置的“[”字符来描述,如一个定义为“java.lang.String[][]
”类型的二维数组将被记录成“[[Ljava/lang/String;
”,一个整型数组“int[]
”将被记录成“[I
”。
用描述符来描述方法时,按照先参数列表、后返回值的顺序描述,参数列表按照参数的严格顺序放在一组小括号“()”之内。
如方法
void inc()
的描述符为“()V
”,方法java.lang.String toString()
的描述符为“()Ljava/lang/String;
”,方法int indexOf(char[]source,int sourceOffset,int sourceCount,char[]target,int targetOffset,int targetCount,int fromIndex)
的描述符为“([CII[CIII)I
”。
字段表集合中不会列出从父类或者父接口中继承而来的字段,但有可能出现原本Java代码之中不存在的字段,譬如在内部类中为了保持对外部类的访问性,编译器就会自动添加指向外部类实例的字段。
6.3.6 方法表集合
方法表的结构如同字段表一样,依次包括访问标志(access_flags)、名称索引(name_index)、描述符索引(descriptor_index)、属性表集合(attributes)几项。
方法表结构
method_info {
u2 access_flags;
u2 name_index;
u2 descriptor_index;
u2 attributes_count;
attribute_info attributes[attributes_count];
}
Table. Method access and property flags
Flag Name | Value | Interpretation |
---|---|---|
ACC_PUBLIC | 0x0001 | Declared public ; may be accessed from outside its package. |
ACC_PRIVATE | 0x0002 | Declared private ; accessible only within the defining class. |
ACC_PROTECTED | 0x0004 | Declared protected ; may be accessed within subclasses. |
ACC_STATIC | 0x0008 | Declared static . |
ACC_FINAL | 0x0010 | Declared final ; must not be overridden. |
ACC_SYNCHRONIZED | 0x0020 | Declared synchronized ; invocation is wrapped by a monitor use. |
ACC_BRIDGE | 0x0040 | A bridge method, generated by the compiler. |
ACC_VARARGS | 0x0080 | Declared with variable number of arguments. |
ACC_NATIVE | 0x0100 | Declared native ; implemented in a language other than Java. |
ACC_ABSTRACT | 0x0400 | Declared abstract ; no implementation is provided. |
ACC_STRICT | 0x0800 | Declared strictfp ; floating-point mode is FP-strict. |
ACC_SYNTHETIC | 0x1000 | Declared synthetic; not present in the source code. |
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.6
方法里的Java代码,经过Javac编译器编译成字节码指令之后,存放在方法属性表集合中一个名为“Code”的属性里面。
与字段表集合相对应地,如果父类方法在子类中没有被重写(Override),方法表集合中就不会出现来自父类的方法信息。但同样地,有可能会出现由编译器自动添加的方法,最常见的便是类构造器“<clinit>()
”方法和实例构造器“<init>()
”方法。
在Java语言中,要重载(Overload)一个方法,除了要与原方法具有相同的简单名称之外,还要求必须拥有一个与原方法不同的特征签名。特征签名是指一个方法中各个参数在常量池中的字段符号引用的集合,也正是因为返回值不会包含在特征签名之中,所以Java语言里面是无法仅仅依靠返回值的不同来对一个已有方法进行重载的。
在《Java虚拟机规范》第2版的4.4.4节及《Java语言规范》第3版的8.4.2节中分别都定义了字节码层面的方法特征签名以及Java代码层面的方法特征签名,Java代码的方法特征签名只包括方法名称、参数顺序及参数类型,而字节码的特征签名还包括方法返回值以及受查异常表。
6.3.7 属性表集合
1.Code属性
Java程序方法体里面的代码经过Javac编译器处理之后,最终变为字节码指令存储在Code属性内。
Code_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 max_stack;
u2 max_locals;
u4 code_length;
u1 code[code_length];
u2 exception_table_length;
{ u2 start_pc;
u2 end_pc;
u2 handler_pc;
u2 catch_type;
} exception_table[exception_table_length];
u2 attributes_count;
attribute_info attributes[attributes_count];
}
attribute_name_index是一项指向CONSTANT_Utf8_info型常量的索引,此常量值固定为“Code”,它代表了该属性的属性名称。
attribute_length指示了属性值的长度,由于属性名称索引与属性长度一共为6个字节,所以属性值的长度固定为整个属性表长度减去6个字节。
max_stack代表了操作数栈(Operand Stack)深度的最大值。在方法执行的任意时刻,操作数栈都不会超过这个深度。虚拟机运行的时候需要根据这个值来分配栈帧(Stack Frame)中的操作栈深度。
max_locals代表了局部变量表所需的存储空间。在这里,max_locals的单位是变量槽(Slot),变量槽是虚拟机为局部变量分配内存所使用的最小单位。对于byte、char、float、int、short、boolean和returnAddress等长度不超过32位的数据类型,每个局部变量占用一个变量槽,而double和long这两种64位的数据类型则需要两个变量槽来存放。方法参数(包括实例方法中的隐藏参数“this”)、显式异常处理程序的参数(Exception Handler Parameter,就是try-catch语句中catch块中所定义的异常)、方法体中定义的局部变量都需要依赖局部变量表来存放。注意,并不是在方法中用了多少个局部变量,就把这些局部变量所占变量槽数量之和作为max_locals的值,操作数栈和局部变量表直接决定一个该方法的栈帧所耗费的内存,不必要的操作数栈深度和变量槽数量会造成内存的浪费。Java虚拟机的做法是将局部变量表中的变量槽进行重用,当代码执行超出一个局部变量的作用域时,这个局部变量所占的变量槽可以被其他局部变量所使用,Javac编译器会根据变量的作用域来分配变量槽给各个变量使用,根据同时生存的最大局部变量数量和类型计算出max_locals的大小。
code_length和code用来存储Java源程序编译后生成的字节码指令。code_length代表字节码长度,code是用于存储字节码指令的一系列字节流。关于code_length,有一件值得注意的事情,虽然它是一个u4类型的长度值,理论上最大值可以达到2的32次幂,但是《Java虚拟机规范》中明确限制了一个方法不允许超过65535条字节码指令,即它实际只使用了u2的长度,如果超过这个限制,Javac编译器就会拒绝编译。
Code属性是Class文件中最重要的一个属性,如果把一个Java程序中的信息分为代码(Code,方法体里面的Java代码)和元数据(Metadata,包括类、字段、方法定义及其他信息)两部分,那么在整个Class文件里,Code属性用于描述代码,所有的其他数据项目都用于描述元数据。
在字节码指令之后的是这个方法的显式异常处理表(下文简称“异常表”)集合,异常表对于Code属性来说并不是必须存在的。异常表包含四个字段,这些字段的含义为:如果当字节码从第start_pc行到第end_pc行之间(不含第end_pc行)出现了类型为catch_type或者其子类的异常(catch_type为指向一个CONSTANT_Class_info型常量的索引),则转到第handler_pc行继续处理。当catch_type的值为0时,代表任意异常情况都需要转到handler_pc处进行处理。
此处字节码的“行”是一种形象的描述,指的是字节码相对于方法体开始的偏移量,而不是Java源码的行号。
2.Exceptions属性
这里的Exceptions属性是在方法表中与Code属性平级的一项属性,读者不要与前面刚刚讲解完的异常表产生混淆。Exceptions属性的作用是列举出方法中可能抛出的受查异常(Checked Excepitons),也就是方法描述时在throws关键字后面列举的异常。
Exceptions_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 number_of_exceptions;
u2 exception_index_table[number_of_exceptions];
}
3.LineNumberTable属性
LineNumberTable属性用于描述Java源码行号与字节码行号(字节码的偏移量)之间的对应关系。如果选择不生成LineNumberTable属性,对程序运行产生的最主要影响就是当抛出异常时,堆栈中将不会显示出错的行号,并且在调试程序的时候,也无法按照源码行来设置断点。
LineNumberTable_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 line_number_table_length;
{ u2 start_pc;
u2 line_number;
} line_number_table[line_number_table_length];
}
4.LocalVariableTable及LocalVariableTypeTable属性
LocalVariableTable属性用于描述栈帧中局部变量表的变量与Java源码中定义的变量之间的关系。如果没有生成这项属性,最大的影响就是当其他人引用这个方法时,所有的参数名称都将会丢失,在调试期间也无法根据参数名称从上下文中获得参数值。
LocalVariableTable_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 local_variable_table_length;
{ u2 start_pc;
u2 length;
u2 name_index;
u2 descriptor_index;
u2 index;
} local_variable_table[local_variable_table_length];
}
start_pc和length属性分别代表了这个局部变量的生命周期开始的字节码偏移量及其作用范围覆盖的长度,两者结合起来就是这个局部变量在字节码之中的作用域范围。
name_index和descrip tor_index都是指向常量池中CONSTANT_Utf8_info型常量的索引,分别代表了局部变量的名称以及这个局部变量的描述符。
index是这个局部变量在栈帧的局部变量表中变量槽的位置。当这个变量数据类型是64位类型时 (double和long),它占用的变量槽为index和index+1两个。
LocalVariableTypeTable的属性结构与LocalVariableTable非常相似,仅仅是把记录的字段描述符的descriptor_index替换成了字段的特征签名(Signature)。对于非泛型类型来说,描述符和特征签名能描述的信息是能吻合一致的,但是泛型引入之后,由于描述符中泛型的参数化类型被擦除掉,描述符就不能准确描述泛型类型了。因此出现了LocalVariableTypeTable属性,使用字段的特征签名来完成泛型的描述。
5.SourceFile及SourceDebugExtension属性
SourceFile属性用于记录生成这个Class文件的源码文件名称。如果不生成这项属性,当抛出异常时,堆栈中将不会显示出错代码所属的文件名。这个属性是一个定长的属性。
SourceFile_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 sourcefile_index;
}
sourcefile_index数据项是指向常量池中CONSTANT_Utf8_info型常量的索引,常量值是源码文件的文件名。
SourceDebugExtension属性用于存储额外的代码调试信息。给一些非Java语言编写,却需要编译成字节码并运行在Java虚拟机中的程序提供了一个进行调试的标准机制,使用SourceDebugExtension属性就可以用于存储这个标准所新加入的调试信息。
SourceDebugExtension_attribute {
u2 attribute_name_index;
u4 attribute_length;
u1 debug_extension[attribute_length];
}
其中debug_extension存储的就是额外的调试信息,是一组通过变长UTF-8格式来表示的字符串。一个类中最多只允许存在一个SourceDebugExtension属性。
6.ConstantValue属性
ConstantValue属性的作用是通知虚拟机自动为静态变量赋值。只有被static关键字修饰的变量(类变量)才可以使用这项属性。对非static类型的变量(也就是实例变量)的赋值是在实例构造器<init>()
方法中进行的;而对于类变量,则有两种方式可以选择:在类构造器<clinit>()
方法中或者使用ConstantValue属性。目前Oracle公司实现的Javac编译器的选择是,如果同时使用final
和static
来修饰一个变量(按照习惯,这里称“常量”更贴切),并且这个变量的数据类型是基本类型或者java.lang.String
的话,就将会生成ConstantValue属性来进行初始化;如果这个变量没有被final修饰,或者并非基本类型及字符串,则将会选择在<clinit>()
方法中进行初始化。
ConstantValue_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 constantvalue_index;
}
7.InnerClasses属性
InnerClasses属性用于记录内部类与宿主类之间的关联。如果一个类中定义了内部类,那编译器将会为它以及它所包含的内部类生成InnerClasses属性。
InnerClasses_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 number_of_classes;
{ u2 inner_class_info_index;
u2 outer_class_info_index;
u2 inner_name_index;
u2 inner_class_access_flags;
} classes[number_of_classes];
}
数据项number_of_classes代表需要记录多少个内部类信息,每一个内部类的信息都由一个inner_classes_info表进行描述。
inner_class_info_index和outer_class_info_index都是指向常量池中CONSTANT_Class_info型常量的索引,分别代表了内部类和宿主类的符号引用。
inner_name_index是指向常量池中CONSTANT_Utf8_info型常量的索引,代表这个内部类的名称,如果是匿名内部类,这项值为0。
inner_class_access_flags是内部类的访问标志,类似于类的access_flags,它的取值范围如下表所示。
Table. Nested class access and property flags
Flag Name | Value | Interpretation |
---|---|---|
ACC_PUBLIC | 0x0001 | Marked or implicitly public in source. |
ACC_PRIVATE | 0x0002 | Marked private in source. |
ACC_PROTECTED | 0x0004 | Marked protected in source. |
ACC_STATIC | 0x0008 | Marked or implicitly static in source. |
ACC_FINAL | 0x0010 | Marked final in source. |
ACC_INTERFACE | 0x0200 | Was an interface in source. |
ACC_ABSTRACT | 0x0400 | Marked or implicitly abstract in source. |
ACC_SYNTHETIC | 0x1000 | Declared synthetic; not present in the source code. |
ACC_ANNOTATION | 0x2000 | Declared as an annotation type. |
ACC_ENUM | 0x4000 | Declared as an enum type. |
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.7.6
8.Deprecated及Synthetic属性
Deprecated属性用于表示某个类、字段或者方法,已经被程序作者定为不再推荐使用,它可以通过代码中使用“@Deprecated
”注解进行设置。
Deprecated_attribute {
u2 attribute_name_index;
u4 attribute_length;
}
Synthetic属性代表此字段或者方法并不是由Java源码直接产生的,而是由编译器自行添加的。标识一个类、字段或者方法是编译器自动产生的,也可以设置它们访问标志中的ACC_SYNTHETIC标志位。编译器通过生成一些在源代码中不存在的Synthetic方法、字段甚至是整个类的方式,实现了越权访问(越过private修饰器)或其他绕开了语言限制的功能,这可以算是一种早期优化的技巧。
Synthetic_attribute {
u2 attribute_name_index;
u4 attribute_length;
}
9.StackMapTable属性
StackMapTable属性会在虚拟机类加载的字节码验证阶段被新类型检查验证器(Type Checker)使用,目的在于代替以前比较消耗性能的基于数据流分析的类型推导验证器。
StackMapTable属性中包含零至多个栈映射帧(Stack Map Frame),每个栈映射帧都显式或隐式地代表了一个字节码偏移量,用于表示执行到该字节码时局部变量表和操作数栈的验证类型。类型检查验证器会通过检查目标方法的局部变量和操作数栈所需要的类型来确定一段字节码指令是否符合逻辑约束。
StackMapTable_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 number_of_entries;
stack_map_frame entries[number_of_entries];
}
在Java SE 7版之后的《Java虚拟机规范》中,明确规定对于版本号大于或等于50.0的Class文件,如果方法的Code属性中没有附带StackMapTable属性,那就意味着它带有一个隐式的StackMap属性,这个StackMap属性的作用等同于number_of_entries值为0的StackMapTable属性。一个方法的Code属性最多只能有一个StackMapTable属性,否则将抛出ClassFormatError异常。
10.Signature属性
任何类、接口、初始化方法或成员的泛型签名如果包含了类型变量(Type Variable)或参数化类型(Parameterized Type),则Signature属性会为它记录泛型签名信息。之所以要专门使用这样一个属性去记录泛型类型,是因为Java语言的泛型采用的是擦除法实现的伪泛型,字节码(Code属性)中所有的泛型信息编译(类型变量、参数化类型)在编译之后都通通被擦除掉。
Signature_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 signature_index;
}
其中signature_index项的值必须是一个对常量池的有效索引。
11.BootstrapMethods属性
BootstrapMethods属性用于保存invokedynamic指令引用的引导方法限定符。
BootstrapMethods_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 num_bootstrap_methods;
{ u2 bootstrap_method_ref;
u2 num_bootstrap_arguments;
u2 bootstrap_arguments[num_bootstrap_arguments];
} bootstrap_methods[num_bootstrap_methods];
}
BootstrapMethods属性里,num_bootstrap_methods项的值给出了bootstrap_methods[]数组中的引导方法限定符的数量。而bootstrap_methods[]数组的每个成员包含了一个指向常量池CONSTANT_MethodHandle结构的索引值,它代表了一个引导方法。还包含了这个引导方法静态参数的序列(可能为空)。bootstrap_methods[]数组的每个成员必须包含以下三项内容:
- bootstrap_method_ref:bootstrap_method_ref项的值必须是一个对常量池的有效索引。常量池在该索引处的值必须是一个CONSTANT_MethodHandle_info结构。
- num_bootstrap_arguments:num_bootstrap_arguments项的值给出了bootstrap_argu-ments[]数组成员的数量。
- bootstrap_arguments[]:bootstrap_arguments[]数组的每个成员必须是一个对常量池的有效索引。常量池在该索引处必须是下列结构之一:CONSTANT_String_info、CONSTANT_Class_info、CONSTANT_Integer_info、CONSTANT_Long_info、CONSTANT_Float_info、CONSTANT_Double_info、CONSTANT_MethodHandle_info或CONSTANT_MethodType_info。
12.MethodParameters属性
MethodParameters的作用是记录方法的各个形参名称和信息。
MethodParameters_attribute {
u2 attribute_name_index;
u4 attribute_length;
u1 parameters_count;
{ u2 name_index;
u2 access_flags;
} parameters[parameters_count];
}
其中,name_index是一个指向常量池CONSTANT_Utf8_info常量的索引值,代表了该参数的名称。而access_flags是参数的状态指示器,它可以包含以下三种状态中的一种或多种:
- 0x0010(ACC_FINAL):表示该参数被final修饰。
- 0x1000(ACC_SYNTHETIC):表示该参数并未出现在源文件中,是编译器自动生成的。
- 0x8000(ACC_MANDATED):表示该参数是在源文件中隐式定义的。Java语言中的典型场景是this关键字。
13.模块化相关属性
Module属性除了表示该模块的名称、版本、标志信息以外,还存储了这个模块requires、exports、opens、uses和provides定义的全部内容,其结构如下所示。
Module_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 module_name_index;
u2 module_flags;
u2 module_version_index;
u2 requires_count;
{ u2 requires_index;
u2 requires_flags;
u2 requires_version_index;
} requires[requires_count];
u2 exports_count;
{ u2 exports_index;
u2 exports_flags;
u2 exports_to_count;
u2 exports_to_index[exports_to_count];
} exports[exports_count];
u2 opens_count;
{ u2 opens_index;
u2 opens_flags;
u2 opens_to_count;
u2 opens_to_index[opens_to_count];
} opens[opens_count];
u2 uses_count;
u2 uses_index[uses_count];
u2 provides_count;
{ u2 provides_index;
u2 provides_with_count;
u2 provides_with_index[provides_with_count];
} provides[provides_count];
}
ModulePackages属性用于描述该模块中所有的包,不论是不是被export或者open的。
ModulePackages_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 package_count;
u2 package_index[package_count];
}
ModuleMainClass属性用于确定该模块的主类(Main Class)。
ModuleMainClass_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 main_class_index;
}
其中,main_class_index是一个指向常量池CONSTANT_Class_info常量的索引值,代表了该模块的主类。
14.运行时注解相关属性
早在JDK 5时期,Java语言的语法进行了多项增强,其中之一是提供了对注解(Annotation)的支持。为了存储源码中注解信息,Class文件同步增加了RuntimeVisibleAnnotations、RuntimeInvisibleAnnotations、RuntimeVisibleParameterAnnotations和RuntimeInvisibleParameterAnnotations四个属性。到了JDK 8时期,进一步加强了Java语言的注解使用范围,又新增类型注解(JSR 308),所以Class文件中也同步增加了RuntimeVisibleTypeAnnotations和RuntimeInvisibleTypeAnnotations两个属性。
以RuntimeVisibleAnnotations为代表进行介绍。
RuntimeVisibleAnnotations_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 num_annotations;
annotation annotations[num_annotations];
}
num_annotations是annotations数组的计数器,annotations中每个元素都代表了一个运行时可见的注解,注解在Class文件中以annotation结构来存储。
annotation {
u2 type_index;
u2 num_element_value_pairs;
{ u2 element_name_index;
element_value value;
} element_value_pairs[num_element_value_pairs];
}
type_index是一个指向常量池CONSTANT_Utf8_info常量的索引值,该常量应以字段描述符的形式表示一个注解。num_element_value_pairs是element_value_pairs数组的计数器,element_value_pairs中每个元素都是一个键值对,代表该注解的参数和值。
6.4 字节码指令简介
Java虚拟机的指令由一个字节长度的、代表着某种特定操作含义的数字(称为操作码,Opcode)以及跟随其后的零至多个代表此操作所需的参数(称为操作数,Operand)构成。由于Java虚拟机采用面向操作数栈而不是面向寄存器的架构,所以大多数指令都不包含操作数,只有一个操作码,指令参数都存放在操作数栈中。
字节码指令集可算是一种具有鲜明特点、优势和劣势均很突出的指令集架构,由于限制了Java虚拟机操作码的长度为一个字节(即0~255),这意味着指令集的操作码总数不能够超过256条;又由于class文件格式放弃了编译后代码的操作数长度对齐,这就意味着虚拟机在处理那些超过一个字节的数据时,不得不在运行时从字节中重建出具体数据的结构。
这种操作在某种程度上会导致解释执行字节码时将损失一些性能,但这样做的优势也同样明显:放弃了操作数长度对齐,就意味着可以省略掉大量的填充和间隔符号;用一个字节来代表操作码,也是为了尽可能获得短小精干的编译代码。
字节码指令流基本上都是单字节对齐的,只有“
tableswitch
”和“lookupswitch
”两条指令例外,由于它们的操作数比较特殊,是以4字节为界划分开的,所以这两条指令也需要预留出相应的空位填充来实现对齐。
6.4.1 字节码与数据类型
对于大部分与数据类型相关的字节码指令,它们的操作码助记符中都有特殊的字符来表明专门为哪种数据类型服务:i代表对int类型的数据操作,l代表long,s代表short,b代表byte,c代表char,f代表
float,d代表double,a代表reference。
opcode | byte | short | int | long | float | double | char | reference |
---|---|---|---|---|---|---|---|---|
Tipush | bipush | sipush | ||||||
Tconst | iconst | lconst | fconst | dconst | aconst | |||
Tload | iload | lload | fload | dload | aload | |||
Tstore | istore | lstore | fstore | dstore | astore | |||
Tinc | iinc | |||||||
Taload | baload | saload | iaload | laload | faload | daload | caload | aaload |
Tastore | bastore | sastore | iastore | lastore | fastore | dastore | castore | aastore |
Tadd | iadd | ladd | fadd | dadd | ||||
Tsub | isub | lsub | fsub | dsub | ||||
Tmul | imul | lmul | fmul | dmul | ||||
Tdiv | idiv | ldiv | fdiv | ddiv | ||||
Trem | irem | lrem | frem | drem | ||||
Tneg | ineg | lneg | fneg | dneg | ||||
Tshl | ishl | lshl | ||||||
Tshr | ishr | lshr | ||||||
Tushr | iushr | lushr | ||||||
Tand | iand | land | ||||||
Tor | ior | lor | ||||||
Txor | ixor | lxor | ||||||
i2T | i2b | i2s | i2l | i2f | i2d | |||
l2T | l2i | l2f | l2d | |||||
f2T | f2i | f2l | f2d | |||||
d2T | d2i | d2l | d2f | |||||
Tcmp | lcmp | |||||||
Tcmpl | fcmpl | dcmpl | ||||||
Tcmpg | fcmpg | dcmpg | ||||||
if_TempOP | if_icmpOP | if_acmpOP | ||||||
Treturn | ireturn | lreturn | freturn | dreturn | areturn |
编译器会在编译期或运行期将byte和short类型的数据带符号扩展(Sign-Extend)为相应的int类型数据,将boolean和char类型数据零位扩展(Zero-Extend)为相应的int类型数据。与之类似,在处理boolean、byte、short和char类型的数组时,也会转换为使用对应的int类型的字节码指令来处理。因此,大多数对于boolean、byte、short和char类型数据的操作,实际上都是使用相应的对int类型作为运算类型(Computational Type)来进行的。
6.4.2 加载和存储指令
加载和存储指令用于将数据在栈帧中的局部变量表和操作数栈之间来回传输。
6.4.3 运算指令
算术指令用于对两个操作数栈上的值进行某种特定运算,并把结果重新存入到操作栈顶。大体上运算指令可以分为两种:对整型数据进行运算的指令与对浮点型数据进行运算的指令。
《Java虚拟机规范》中规定了在处理整型数据时,只有除法指令(idiv
和ldiv
)以及求余指令(irem
和lrem
)中当出现除数为零时会导致虚拟机抛出ArithmeticException
异常,其余任何整型数运算场景都不应该抛出运行时异常。
《Java虚拟机规范》要求虚拟机实现在处理浮点数时,必须严格遵循IEEE 754规范中所规定行为和限制,也就是说Java虚拟机必须完全支持IEEE 754中定义的“非正规浮点数值”(DenormalizedFloating-Point Number)和“逐级下溢”(Gradual Underflow)的运算规则。这些规则将会使某些数值算法处理起来变得明确,不会出现模棱两可的困境。譬如以上规则要求Java虚拟机在进行浮点数运算时,所有的运算结果都必须舍入到适当的精度,非精确的结果必须舍入为可被表示的最接近的精确值;如果有两种可表示的形式与该值一样接近,那将优先选择最低有效位为零的。这种舍入模式也是IEEE 754规范中的默认舍入模式,称为向最接近数舍入模式。而在把浮点数转换为整数时,Java虚拟机使用IEEE 754标准中的向零舍入模式,这种模式的舍入结果会导致数字被截断,所有小数部分的有效字节都会被丢弃掉。向零舍入模式将在目标数值类型中选择一个最接近,但是不大于原值的数字来作为最精确的舍入结果。
6.4.4 类型转换指令
类型转换指令可以将两种不同的数值类型相互转换,这些转换操作一般用于实现用户代码中的显式类型转换操作,或者用来处理本节开篇所提到的字节码指令集中数据类型相关指令无法与数据类型一一对应的问题。
Java虚拟机直接支持(即转换时无须显式的转换指令)以下数值类型的宽化类型转换(WideningNumeric Conversion,即小范围类型向大范围类型的安全转换):
- int类型到long、float或者double类型
- long类型到float、double类型
- float类型到double类型
与之相对的,处理窄化类型转换(Narrowing Numeric Conversion)时,就必须显式地使用转换指令来完成,这些转换指令包括i2b、i2c、i2s、l2i、f2i、f2l、d2i、d2l和d2f。窄化类型转换可能会导致转换结果产生不同的正负号、不同的数量级的情况,转换过程很可能会导致数值的精度丢失。
在将int或long类型窄化转换为整数类型T的时候,转换过程仅仅是简单丢弃除最低位N字节以外的内容,N是类型T的数据类型长度,这将可能导致转换结果与输入值有不同的正负号。
6.4.7 控制转移指令
控制转移指令可以让Java虚拟机有条件或无条件地从指定位置指令(而不是控制转移指令)的下一条指令继续执行程序,从概念模型上理解,可以认为控制指令就是在有条件或无条件地修改PC寄存器的值。
6.4.8 方法调用和返回指令
方法调用指令与数据类型无关,而方法返回指令是根据返回值的类型区分的
6.4.9 异常处理指令
在Java虚拟机中,处理异常(catch
语句)不是由字节码指令来实现的(很久之前曾经使用jsr和ret指令来实现,现在已经不用了),而是采用异常表来完成。
6.4.10 同步指令
Java虚拟机可以支持方法级的同步和方法内部一段指令序列的同步,这两种同步结构都是使用管程(Monitor,更常见的是直接将它称为“锁”)来实现的。
方法级的同步是隐式的,无须通过字节码指令来控制,它实现在方法调用和返回操作之中。虚拟机可以从方法常量池中的方法表结构中的ACC_SYNCHRONIZED
访问标志得知一个方法是否被声明为同步方法。当方法调用时,调用指令将会检查方法的ACC_SYNCHRONIZED
访问标志是否被设置,如果设置了,执行线程就要求先成功持有管程,然后才能执行方法,最后当方法完成(无论是正常完成还是非正常完成)时释放管程。在方法执行期间,执行线程持有了管程,其他任何线程都无法再获取到同一个管程。如果一个同步方法执行期间抛出了异常,并且在方法内部无法处理此异常,那这个同步方法所持有的管程将在异常抛到同步方法边界之外时自动释放。
同步一段指令集序列通常是由Java语言中的synchronized
语句块来表示的,Java虚拟机的指令集中有monitorenter
和monitorexit
两条指令来支持synchronized
关键字的语义,正确实现synchronized
关键字需要Javac编译器与Java虚拟机两者共同协作支持,譬如有如下代码清单所示的代码。
代码清单:
void onlyMe(Foo f) {
synchronized(f) {
doSomething();
}
}
编译后生成的字节码:
Method void onlyMe(Foo)
0 aload_1 // 将对象f入栈
1 dup // 复制栈顶元素(即f的引用)
2 astore_2 // 将栈顶元素存储到局部变量表变量槽 2中
3 monitorenter // 以栈定元素(即f)作为锁,开始同步
4 aload_0 // 将局部变量槽 0(即this指针)的元素入栈
5 invokevirtual #5 // 调用doSomething()方法
8 aload_2 // 将局部变量Slow 2的元素(即f)入栈
9 monitorexit // 退出同步
10 goto 18 // 方法正常结束,跳转到18返回
13 astore_3 // 从这步开始是异常路径,见下面异常表的Taget 13
14 aload_2 // 将局部变量Slow 2的元素(即f)入栈
15 monitorexit // 退出同步
16 aload_3 // 将局部变量Slow 3的元素(即异常对象)入栈
17 athrow // 把异常对象重新抛出给onlyMe()方法的调用者
18 return // 方法正常返回
Exception table:
From To Target Type
4 10 13 any
13 16 13 any
编译器必须确保无论方法通过何种方式完成,方法中调用过的每条monitorenter
指令都必须有其对应的monitorexit
指令,而无论这个方法是正常结束还是异常结束。
6.5 公有设计,私有实现
理解公有设计与私有实现之间的分界线是非常有必要的,任何一款Java虚拟机实现都必须能够读取class文件并精确实现包含在其中的Java虚拟机代码的语义。一个优秀的虚拟机实现,在满足《Java虚拟机规范》的约束下对具体实现做出修改和优化也是完全可行的,并且《Java虚拟机规范》中明确鼓励实现者这样去做。只要优化以后class文件依然可以被正确读取,并且包含在其中的语义能得到完整保持,那实现者就可以选择以任何方式去实现这些语义,虚拟机在后台如何处理class文件完全是实现者自己的事情,只要它在外部接口上看起来与规范描述的一致即可。
虚拟机实现的方式主要有以下两种:
- 将输入的Java虚拟机代码在加载时或执行时翻译成另一种虚拟机的指令集;
- 将输入的Java虚拟机代码在加载时或执行时翻译成宿主机处理程序的本地指令集(即即时编译器代码生成技术)。
评论区